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Spin glasses are rather unique systems which show simultaneously apparent phase transitions as
well as metastable or glassy behavior. The existence of irreversible behavior appears to be
intimately connected with the phase transition. Here, we will review experiments which show
irreversible phenomena and will deduce from the data a simple heuristic picture of the free energy
surface ¥ [m, ], where m; is the thermally averaged spin at site i. The picture that follows from this
analysis is then made more rigorous within a calculational scheme, in which, for large-size
systems, we numerically compute the evolution of minima of mean field models for F[m,] as the
magnetic field H and temperature T are changed. For Ising spins, magnetic hysteresis, field-
cooled, zero-field-cooled, and remanent magnetizations are computed and found to be in good
qualitative agreement with experiment. For Heisenberg spins, we find no irreversibility unless
anisotropy is present. We discuss the re-entrant ferromagnet-spin glass transition as well as the
effects of various kinds of anisotropy, on vector spin glasses. The overall good qualitative
agreement between theory and experiment lends support to our hypothesis that, on intermediate

time scales, the behavior of spin glasses reflects the properties of the free energy surface: that
irreversibility occurs when minima of F are destroyed with changing H or T.

PACS numbers: 75.30. — m, 05.70. — a, 64.60.Cm

I. INTRODUCTION

In the last few years theoretical and experimental stud-
ies of spin glasses have been increasingly concerned with
nonequilibrium and time-dependent effects. Early theoreti-
cal treatments' were based on the presupposition that a ther-
modynamic phase transition existed. However, shortly
thereafter, experiments®™® provided clear evidence that at
low temperatures the dc magnetization and other properties
were time and history dependent. Therefore an equilibrium,
thermodynamic approach seems to be inappropriate. This
failure of equilibrium thermodynamics is presumably con-
nected to the breakdown of ergodicity. The spin glass does
not sample all accessible states in the time scale of a laborato-
ry experiment.

There have been a number of theoretical approaches
aimed at dealing with these nonequilibrium effects. These
have built on either dynamical”® or replica symmetry break-
ing®!" concepts. Our own work'*!> has focused on nonergo-
dicity in spin glasses and is based on the assumption that for
intermediate time scale experiments the spin glass is con-
tained within a local minimum of the free energy surface. As
the field or temperature changes, this surface evolves; the
spin glass follows the evolution of a given minimum as long
as it persists and when it disappears, the system hops to a
nearby minimum in which it is trapped for some period of
time. The results obtained numerically by following the evo-
lution of the free energy surface yield various history-depen-
dent magnetizations which are in good qualitative agree-
ment with experiment. In this paper we will review the
essential aspects of this work.

As will be seen below, our techniques are amenable to a
treatment of Heisenberg as well as Ising spin glasses. In the

1634 J. Appl. Phys. 55 (6), 15 March 1984

0021-8979/84/061634-06%02.40

Heisenberg case, we have been able to study the effects of
various kinds of anisotropy on the history-dependent mag-
netizations for large-size systems.'> Within conventional
simulation techniques such studies have not been feasible,
because of computational limitations. Of particular interest
in the last few years has been the phenomenon of “re-en-
trant” spin glass behavior, which occurs in (presumably) an-
isotropic Heisenberg spin glasses which are close to the criti-
cal concentration for ferromagnetism. For these systems it
appears that there is long-range ferromagnetic order at high
temperatures which is destroyed at lower T when a spin-
glass-like state sets in.'* While experiments'® cannot unequi-
vocably prove that the ferromagnetic order is of truly infinite
range, it is nevertheless clear from a variety of different mea-
surements'®!” that in these alloys there is some kind of
“transition” to a new low-temperature state. Furthermore at
low temperatures there appears to be a considerable amount
of irreversibility which is a signature of spin glass behavior."’

As yet, no theoretical studies have provided a convinc-
ing explanation of this re-entrant behavior; we summarize
here our numerical work which demonstrates that Heisen-
berg spin glasses with conventional types of temperature-
independent anisotropy do not appear to undergo a re-en-
trant transition.

Il. EXPERIMENTAL DATA

One of the first indications of the unusual properties of
spin glasses was the observation of their history-dependent
magnetization.?® The zero-field-cooled (zfc) magnetization
is obtained by cooling thé sample to the measuring tempera-
ture in zero external field starting at high temperatures; then
afield H is applied and M is measured. A second field-cooled
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(fc) magnetization is obtained by turning on the field H above
T. and then cooling at constant H #0. In general, the zfc and
fc M differ for T < T, . For some systems, e.g., CuMn, the zfc
M is independent of the measuring time® for 7'< T, while
for other systems, e.g., AuFe, the zfc magnetization changes
slowly with time® for T below T.; for long times its value
approaches the fc value. Because of the time independence of
the fc magnetization, it is believed that the most likely candi-
date for the true equilibrium state is that obtained upon cool-
ing at constant field. On heating, the fc magnetization is
reversible, whereas the zfc magnetization is not. It is impor-
tant to note that if a zfc magnetization is cooled back down
(sufficiently below T ), a reversible and relatively 7-indepen-
dent magnetization is obtained.

There exists an irreversibility temperature above which
M™ = M*™ . A plot of this characteristic irreversibility tem-
perature versus field was found experimentally® to be similar
to the phase diagram suggested by deAlmeida and Thou-
less, '® based on theoretical arguments. For T higher than the
deAlmeida—-Thouless line the system is reversible and his-
tory independent, while below the line, M depends on the
sample history. Note that the larger the applied H, the lower
T one can go before irreversibility sets in.

An alternative way of representing history-dependent
effects is to study M vs H at fixed 7. Experimental stud-
ies!®2! show that the shape of the hysteresis curve varies
from one spin glass alloy to another. An additional manifes-
tation of irreversibility is the existence of remanent magneti-
zation. The various remanences show an initially rapid de-
crease with time ¢ followed by a much slower (often «1n )
decay. From these data, we can draw the following conclu-
sions:

(1) Cooling processes are reversible. Both the fc magne-
tization and the partially cooled section of the zfc magnetiza-
tion are evidence for this observation.

{2) Heating processes are generally irreversible. This
can be seen by cooling the zfc magnetization (obtained upon
warming).

(3) Changing H is irreversible for all but very large H.
This irreversibility is manifested by the existence of hystere-
sis loops. Irreversibility occurs even for extremely small*
4H.

{4) There are two rather distinct time scales in the
data.”? (i) rapid relaxation (£~ 10~ "' sec) and (ii) slow relaxa-
tion ~Int (£2 1077 sec).

lil. FREE ENERGY SURFACE

These four general properties of the data provide a heu-
ristic picture of the free energy surface F[m,]. We define
m; = (S;), where ( ) stands for a thermal average. The irre-
versibility and metastability of spin glasses naturally arises if
there are many states in which F[m;] is locally stable. All
that is needed to explain the data are the following features of
F[m,], which we will show below to be a consequence of a
more detailed calculational scheme. !>

(1) A minimum in the free energy at temperature T per-
sists to all lower 7.

(2) Below T, the number of minima increases as 7" de-
creases.
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(3) Minima disappear with small changes in A (and
reappear in other regions of F[m;]).

In general, irreversibility is connected with the disap-
pearance of minima with H or T.

To understand how irreversibility is related to the free
energy surface, we presume that there exists an “intermedi-
ate” time scale, such that the system can relax to and be
contained in the nearest free energy minimum. The time nec-
essary to find the true ground state is very long, since the
system must presumably minima hop between many metas-
table states, which are separated by large barriers. This ac-
counts for the slow relaxation processes. The fast processes,
on the other hand, are thought to correspond to the small
rearrangements of spins which must occur when the minima
are deformed as H or T changes. In order for the nature of
the free energy surface to be relevant for considering irre-
versible processes, we must assume that on an intermediate
time scale the spin glass “follows” a minimum of the free
energy surface as it evolves in H or T.

Let us now put these ideas on a firmer footing. As in
most theoretical descriptions of spin glasses, we consider a
Hamiltonian in which spins are located at all sites and the
nearest-neighbor exchange interaction Jj; is given by a Gaus-
sian probability distribution P (J;) of widthJand meanJ,,. In
what follows, T, H, J,, etc. will be measured in units of J; we
also take the magnetic moment guyz = 1. The general free
energy functional F[m;] can be decomposed into the mean
field [mf] and so-called reaction [reac] terms, where for gen-
eral S, such that — S<m; <SS,

. sinh(S + 1/2)H,
Fo[m,] =5 Jmm, — ky TS Inoo + 172,
[mi] =2 Jymim; — ks Ty In—

(1)
Here H, = BZJ,.jmj + BH, and B = 1/kg T. For the infinite

J
Ising spin 1/2 model, Thouless, Anderson, and Palmer’
(TAP) have shown that

Fro[m,] = —} BYT 31— 4md) (1 — dm). (2)

In general, this term derives from the fact that a “self-orien-
tation” effect, present in F™f, should be cancelled out.

A number of groups”> > have searched for minima of
the TAP free energy surface for small systems, N < 100,
Generally, solutions are found only in about 10% of all bond
configurations and those that are found quickly disappear as
the temperature is varied. It is now believed that the reaction
term given in Eq. (2) must be corrected in small-size systems.
However, at the present time there is no fully consistent the-
ory of these corrections.

Because a characterization of the spin glass free energy
appears to be so important to our understanding of these
systems, we have studied the more well-behaved mean field
limit. It should be recalled that at very low and high tem-
peratures the TAP self-consistent equations are equivalent
to those derived from F™ . In contrast to the TAP case,
there are no unphysical extrema: the entropy is always well
behaved.

We solve iteratively the self-consistent equations deriv-
ing from dF ™ /3m, = 0. We consider [m,] to be converged,
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where the superscript » denotes the nth iteration. After a
solution is found at a particular H and 7, we follow the mini-
mum with H or T, using the previously converged values as
the initial guess. It is important to note that iteration gener-
ates only minima. We have verified that minima are not lost
due to numerical artifacts. We always varied H and T ac-
cording to the experimental prescription and in this way gen-
erated fc and zfc magnetizations as well as hysteresis loops.

In addition to Ising spin systems, it is rather easy to
study vector spin models as well using this method. This case
is of considerable interest, since it allows us to study the
effect of anisotropy. The anisotropy terms in the Hamilton-
ian are given by

H*'= — 3 D(S?) — 2,;D;-(S;XS,). (4)

Here the first and second terms correspond to uniaxial and
Dzyaloshinsky—Moriya®® (DM) anisotropy, respectively.
The limit D— — « corresponds to the x-y model and
D—> o, the Ising model. We assume that the coefficients
D% = —D"%:P[D"]=4(D"% + D'). The parameters D
and D’ are chosen as variable parameters, in our numerical
studies. The generalizations of the mean field equations for
the Heisenberg model are straightforward and given in Ref.

13.

] <107¢, (3)

Within the context of our mean field theoretic calcula-
tion, fluctuation effects are ignored. The spin glass is as-
sumed to “sit” at the bottom of a given well as long as it
remains a minimum and, otherwise, to hop into a nearby
state. We expect that the rapid relaxation observed in spin
glasses may be associated with a rapid relaxation to the near-
est minimum; the slow relaxation processes are related to the
very much slower thermal activation processes which carry
the system from one minimum to another. Qur mean field
approach is designed to treat only those experimental mea-
surements which have very slow time dependences (~1n 7),
so that the system is always “quasi-equilibrated.”

Based on our numerical work, our most general obser-
vations, about the way in which the free energy evolves with
H or T, for Heisenberg and Ising spins are as follows:

(1) A free energy minimum never disappears upon cool-
ing.

(2) Below 7. (H ), a minimum will generally disappear
upon heating (unless the minimum was obtained by a cooling
procedure),

(3) For T< T.{H ), minima appear to be continuously
created as well as destroyed, upon changing H, by small but
finite amounts.

IV. ISING MODEL RESULTS

In both the Ising and Heisenberg cases zero-field-
cooled states were obtained by cooling in zero H from high
T>1.5T, to T~0. At H=0 we define T,=T_(0) as the
lowest temperature at which Q =N ~'3,m} extrapolated to
the thermodynamic limit is nonzero. To measure M, a field
was applied after cooling to the lowest 7. The T-dependent
magnetization M is then obtained by warming from low T’
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FIG. 1. Field-cooled (upper curves) and zero-field-cooled {lower curves)
magnetizations vs temperature 7" /J for various H /J for the 2d Ising model
for J, =0, N=30% and S = 1/2. M is normalized by § = 1/2.

as in the experimental procedure. In Fig. 1, the 2d results are
shown for § = 1/2 Ising model with J, = 0. It is important
to realize that after the field is applied and the temperature
raised, a subsequent cooling leads to irreversibility. Also
shown is the field-cooled magnetization obtained upon cool-
ing at constant field H = 0, M™ . These fc states were always
found to have the lowest free energy for a given (H, T'). They
were also completely reversible with temperature.'?

Our results are in qualitative agreement with experi-
mental data although finite-size effects tend to blur out the
transition region so that M ™ and M** do not meet precisely
at the maximum in M.

V. HEISENBERG MODEL RESULTS
A. Isotropic model

We have extended the analysis discussed in the previous
section to the Heisenberg model, with and without anisotro-
py. As first reported elsewhere,'? we have found that the
short-range, isotropic Heisenberg Hamiltonian has no mac-
roscopic irreversibility. This is presumably because of the
accessibility of the fc state which has an infinite number of
degeneracies each corresponding to the rotations about the
field axis.

In the Heisenberg case in zero H, the Edwards Ander-
son order parameter is directionally dependent when a spon-
taneous magnetization is present:

1 xy2 2

= —23.(m])" + (m))",

o 2N2( )"+ (m7)
and

1 2
= 3 (m? y
QH AT l(ml)
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FIG. 2. Temperature dependence of the spin glass order parameters (@, and
Q.) for the isotropic Heisenberg model with different values of J,, for
N=10*and S=1.

where z is the direction of the spontaneous magnetization. In
Fig. 2 we plot these order parameters as a function of T" for
various J,,. At the multicritical point at which the ferromag-
netic, spin glass, and paramagnetic phases meet,
Jo=J,. ~0.55. Above this J,, Q| becomes nonzero at a high-
er temperature than does @, . The onset of @, corresponds to
the onset of ferromagnetism, whereas when @, becomes
nonvanishing, ferromagnetic and spin glass order will coex-
ist. For J, about ~ 1.25, Q, is completely suppressed.

Since our mean field calculation is exact in the vicinity
of T'= 0, we can reliably calculate the shape of the phase
diagram for Heisenberg spin glasses at low 7. (Additionally
we have checked our numerical procedure by comparing the
Ising phase diagram with analytical results.) Figure 3(a) plots
the zero-temperature spontaneous magnetization as a func-
tion of J,, obtained upon slow cooling. This magnetization
appears to rise abruptly from the finite-size-limited “zero”
value to a nonzero value for J,~0.5. This can be seen more
directly in the phase diagram of Fig. 3(b), which indicates the
transition from spin glass to a coexistent ferromagnetic—spin
glass (or Gabay Toulouse)*”*® phase. Note that this critical
value of J,, closely coincides with the multicritical point. We
find that the slope of the transition line from spin glass to the
Gabay Toulouse state is approximately vertical at low T so
that there does not appear to be any re-entrant behavior for
the isotropic case. This result is consistent with recent analy-
tical calculations®® based on the infinite-range isotropic Hei-
senberg Hamiltonian.

B. Uniaxial anisotropy

The introduction of anisotropy produces several inter-
esting effects.'**° Not surprisingly, once anisotropy is intro-
duced, we find that the temperature dependences of M and
M** are qualiatively similar to those found for the Ising
model (Fig. 1).

In Fig. 4(a) are plotted @ and Q, as functions of tem-
perature for various uniaxial anisotropy constants D> 0.
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FIG. 3. (a) Zero-temperature spontaneous magnetization as a function of J,
for the isotropic, short-range Heisenberg model for N = 20° and S = 1, ob-
tained on cooling from high T'( > T,) for each value of J,,. (b) Phase diagram
for this model, showing paramagnetic (P), spin glass {SG), ferromagnetic (F),
and coexistence regions as a function of J,. The cross-hatched region indi-
cates our uncertainty in the position of the phase boundary.

For positive D the higher transition corresponds to Q,
whereas for D < 0, Q, orders first. The phase diagram for the
transverse and longitudinal spin glass transitions is shown in
Fig. 4(b). Our finite-range result is qualitatively similar to
that derived analytically for a classical Heisenberg spin glass
with infinite-range interactions.? It should be noted that our
estimates of the temperature onset for O, are somewhat in-
accurate, due to numerical difficulties. We found no evi-
dence for re-entrant phenomena for the uniaxial case.

C. Dzyaloshinsky moriya anisotropy

The presence of DM anisotropy,’® like the uniaxial
case, leads to irreversibility.'? The fc and zfc magnetizations
are no longer macroscopically identical for nonzero values of
the anisotropy constant D',

There is a strong “competition” between DM anisotro-
py and a positive J, or ferromagnetic bias. The former forces
the spins to be at right angles, whereas the latter leads to a
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Phase diagram for the transverse (T) and longitudinal (L) spin glass transi-
tions in the presence of uniaxial anisotropy.

-
-

parallel alignment of the spins. Because of this competition
we presumed that a Heisenberg system with DM anisotropy
(and positive J;) may exhibit re-entrant behavior. For this
reason we undertook a detailed study of a spin glass system
consisting of 10* Heisenberg spins with D’ = 0.5.

In Fig. 5 are plotted Q, and Q) as functions of 7T for
various J,. Note that in contrast to the isotropic and uniax-
ially anisotropic cases, there is only one transition tempera-
ture for pure DM anisotropy, and Q| and @, become non-
zero at the same temperature. This derives from the fact that
the anisotropy contains a cross product S; XS; which en-
sures that Q, is always present when @ is. For this reason
there can be no pure ferromagnetic phase. The presence of
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FIG. 5. Temperature dependence of the spin glass order parameters for the
case of DM anisotropy for various values of J, for N= 10 and S = 1.

DM anisotropy always leads to some transverse spin glass
freezing as well as longitudinal ferromagnetic order.

Figure 6 shows the phase diagram for D’ = 0.5. For
J;50.6 the low-temperature phase is a spin glass. For
Jy % 0.9 the low-T phase is a coexistent spin glass ferromag-
net. For intermediate values of J;, we were unable to find a
solution to our mean field equations for a range of intermedi-
ate temperatures. Evidently the competition between J, and
DM anisotropy is strong enough so as to totally “confuse”
the system. The failure to find a converged state is associated
with the “frustration” of all the spins in the system and does
not reflect the behavior of a few isolated clusters. In sum-
mary, it appears to be in the most favorable region for re-
entrancy that our numerical scheme has failed to follow a
free energy minimum, in a slow cooling procedure. It is not
obvious if this result is physical or is a consequence of our
numerical scheme. It is clear that when re-entrant phenom-
ena occur there must be a delicate balance between ferro-
magnetic tendencies and random exchange interactions. It is
just in this region of parameter space that the solution to our
equations has eluded us.

- | —
40_/.’
F+SG
2 SG / 1
0 L ///1 ] ]
0.0 0.5 1.0 15 2.0

Jo

FIG. 6. Phase diagram for the short-range Heisenberg model in the pres-
ence of DM anisotropy D' = 0.5. In the shaded region, 0.6 < T,, < 0.9, we
were unable to find a solution of our mean field equations. Note there is no
pure ferromagnetic phase in the presence of DM anisotropy.
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VI. CONCLUSIONS

The most striking conclusion of our studies is that a
variety of experimental measurements can all be reasonably
well reproduced by a theoretical model which focuses only
on the properties of the free energy surface. Presumably, the
reason for the success of this approach is that there are two
important time scales in spin glass experiments: “fast times™
(which may correspond to # < 10~ ! sec), during which the
system makes small adjustments to find the nearest mini-
mum of the free energy, and “long times,” during which the
system finds its way over energy barriers to more stable
states. These latter processes appear to vary as In 7, sugges-
tive of thermal activation. It is primarily because of these
long time processes that our quasistatic or quasiequilibrium
viewpoint has some validity. The fast-time “dynamics” are
automatically included in our calculations.

QOur results for the Heisenberg model show there is no
irreversibility in the isotropic, short-range Heisenberg mod-
el. This is a consequence of the ready accessibility, due to
rotational symmetry, of the field-cooled state. Once micro-
scopic anisotropy is introduced, most history-dependent
properties are found to be similar to those we found for the
Ising case. As reported elsewhere®! we have found evidence
that the infinite-range Sherrington-Kirkpatrick model for
isotropic Heisenberg spin glasses is irreversible. For this
model, both the number of minima and, more importantly,
the size of the barriers between them increase very rapidly
with ¥. Thus it becomes more difficult for the system to
minima hop and the system shows irreversibility.
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